水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的數(shù)值模擬和設(shè)計(jì)研究(1)
作者:石家莊風(fēng)機(jī) 日期:2014-10-30 瀏覽:879
石家莊風(fēng)機(jī)廠 石家莊風(fēng)機(jī) 石家莊市風(fēng)機(jī)廠 石家莊風(fēng)機(jī)維修 石家莊風(fēng)機(jī)銷售
摘要
隨著我國(guó)船舶事業(yè)的不斷發(fā)展,對(duì)船上一些輔助設(shè)備的要求越來越高。目前船用水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)不僅要求防火、排煙,而且要求防爆、輕量化。國(guó)內(nèi)對(duì)水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的設(shè)計(jì)大多采用常規(guī)設(shè)計(jì)方法,本文針對(duì)國(guó)內(nèi)某一款高轉(zhuǎn)速、大排煙量的船用便攜式水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)采用數(shù)值模擬和模型試驗(yàn)相結(jié)合的方法進(jìn)行了研究,填補(bǔ)了國(guó)內(nèi)便攜式水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)數(shù)值模擬研究方面的空白。本文主要進(jìn)行了以下工作:
(1)水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的CFD模型研究
通過分析水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的結(jié)構(gòu)和工作原理,對(duì)流體域進(jìn)行了合理簡(jiǎn)化,并在CFD軟件Fluent的前處理軟件Gambk中完成了水流場(chǎng)和空氣流場(chǎng)三維建模和網(wǎng)格劃分的研究;基于Fluent的標(biāo)準(zhǔn)1^模型對(duì)水輪機(jī)和石家莊風(fēng)機(jī)廠風(fēng)機(jī)的內(nèi)部流動(dòng)進(jìn)行了數(shù)值模擬,將數(shù)值計(jì)算結(jié)果與試驗(yàn)數(shù)據(jù)對(duì)比,水輪機(jī)模擬流量和試驗(yàn)流量的相對(duì)誤差范圍為0.9%?7.6%,石家莊風(fēng)機(jī)廠風(fēng)機(jī)試驗(yàn)全壓和模擬全壓的相對(duì)誤差范圍為4.7%~15.5%,基本能夠滿足計(jì)算要求,計(jì)算模型基本合理。
(2)基于多流場(chǎng)耦合的水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的性能預(yù)測(cè)
基于動(dòng)網(wǎng)格技術(shù),提出了一種多流場(chǎng)弱耦合計(jì)算方法:利用Fluent的UDF接口編程,使水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)水流場(chǎng)和空氣流場(chǎng)的同步計(jì)算,并在每一個(gè)時(shí)間步長(zhǎng)計(jì)算結(jié)束后,通過數(shù)據(jù)文件的讀寫交換兩個(gè)流場(chǎng)之間的相關(guān)數(shù)據(jù),直至兩個(gè)流場(chǎng)達(dá)到完全匹配的穩(wěn)定狀態(tài)。該方法不但可以完成水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)整體性能預(yù)測(cè),而且可以很方便的描述不同流場(chǎng)之間的相互關(guān)系,可以為水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的瞬態(tài)計(jì)算提供借鑒。
(3)水輪機(jī)的流場(chǎng)數(shù)值研究和結(jié)構(gòu)改進(jìn)
對(duì)水輪機(jī)核心部件一噴嘴和水渦輪的主要結(jié)構(gòu)參數(shù)的變化引起水輪機(jī)的主要性能參數(shù)的變化情況作了分析,討論的結(jié)構(gòu)參數(shù)包括水渦輪葉片型線、葉片數(shù)量、葉片高度、噴嘴數(shù)量、噴嘴內(nèi)表面形狀、噴嘴斜射角和直徑比。模擬結(jié)果表明:修改后的葉片型線與常規(guī)型線相比水動(dòng)性能略差,但加工性能大幅提高,可取代常規(guī)型線;葉片數(shù)量可在較大范圍內(nèi)選擇,原模型水輪機(jī)葉片數(shù)的選擇合理;靠單純的增加葉片高度不能提升水輪機(jī)的性能;噴嘴數(shù)量的增多可有效增大出力;錐形噴嘴可有效減少壓力損失,增大水輪機(jī)的功率和效率;噴嘴斜射角越小,水輪機(jī)性能越好,但考慮到結(jié)構(gòu)問題和加工難度,斜射角有一定的選擇范圍;通過增大噴嘴出口段直徑和葉片高度減小直徑比可明顯提高水輪機(jī)的過流能力和功率。根據(jù)這些研究對(duì)水輪機(jī)的結(jié)構(gòu)進(jìn)行了改進(jìn),改進(jìn)后的水輪機(jī)功率在進(jìn)口水壓為0.2MPa時(shí)增加了 39.4W,增長(zhǎng)幅度達(dá)24.7%,進(jìn)口水壓為0.7MPa時(shí)增加了 330.2W,增長(zhǎng)幅度髙達(dá)31.7%。
(4)便攜式水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的設(shè)計(jì)研究
研究了便攜式水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的水動(dòng)設(shè)計(jì)、結(jié)構(gòu)設(shè)計(jì)和氣動(dòng)設(shè)計(jì)。當(dāng)縮放系數(shù)k為0.9~1.2時(shí),不同水輪機(jī)的功率范圍為1000W?2200W,為水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)的設(shè)計(jì)提供了更寬的功率選擇范圍;在保證結(jié)構(gòu)強(qiáng)度滿足的條件下,完成了水輪機(jī)和石家莊風(fēng)機(jī)廠風(fēng)機(jī)最大尺寸的選擇;結(jié)合水輪機(jī)的性能曲線,給出了預(yù)測(cè)石家莊風(fēng)機(jī)廠風(fēng)機(jī)的設(shè)計(jì)風(fēng)量和風(fēng)壓范圍的方法。根據(jù)以上的研究成果,最終提出了一種水力石家莊風(fēng)機(jī)廠風(fēng)機(jī)設(shè)計(jì)方案,并通過設(shè)計(jì)案例進(jìn)行了驗(yàn)證.
關(guān)鍵詞:水力石家莊風(fēng)機(jī)廠風(fēng)機(jī);數(shù)值計(jì)算;多流場(chǎng)耦合;水渦輪;噴嘴;設(shè)計(jì)方案
Abstract
With the continuous development of our marine industry, there are higher and higherrequirements on the marine auxiliary equipment. The marine water driven fans should be notonly fire prevention and smoke prevention, but also explosion-proof and lightweight. Most ofdomestic research on water driven fan adopt conventional design methods. One kind of marineportable water driven fan with high speed and large amount of smoke exhaust in the market wasresearched by adopting the method of numerical simulation and model test, which filled in theblank of the numerical simulation research on portable water driven fan. This paper carried outthe following work:
(1)CFD Model Research on the Water Driven Fan
After analysising the structure and working principles of the research object, the fluiddomain was simplified reasonably and by using the software Gambit the 3D Modeling andmeshing of the water flow field and air flow field were completed; Based on the standard k-£epsilon model of the Fluent software, the internal flow field of the hydraulic turbine and the fanwere simulated, by comparing the results of numerical simulation date and experimental data,the relative error range between the calculated values for the flow rate of the hydraulic turbineand the measured values was 0.9%?7.6%, and the relative error range between the calculatedvalues for the total pressure of the fan and the measured values was 4.7%~15.5%, hich couldbasically meet the computing requirement. Thus the calculation model was basically reasonable.(2)Performance Prediction of the Water Driven Fan Based on Multi Field CouplingA multi field weak coupling calculation method was put forward: water flow field and airflow field are calculated at the same time by using Fluent UDF to program and control theprocess,and after the completion of calculation of each time step, data exchanges between thetwo flow field by reading and writing data files, until two flow field match and become steady.
This method can not only complete the performance prediction of water driven fan,but alsoeasily describes the relationship between different flow fields and provides reference for thetransient calculation of the water driven fan.
(3)The Flow Field Numerical Study and Structure Improvement of the Hydraulic TurbineThe changes of the main hydraulic turbine performance parameters caused by the changesof the structure parameters of the turbine and nozzle which are the main parts of the hydraulicturbine were analyzed. The structure parameters discussed include the type line, the number andthe height of hydraulic turbine blades,nozzle number, nozzle inner surface shape, oblique angle,as well as the cooperative relationship between the hydraulic turbine and nozzle. Simulation
results show that: the hydrodynamic performance of the modfied blde type line is a little lessthan that of the conventional line, but the processng performance can be improved obviously,so the modified blade type line can replace the conventional line; the blade number is availableto choose in a wide range, and the turbine blade number of the original model is reasonable; Byincreasing height of the turbine blade simply cannot improve the performance; The addition ofnozzle number can ffectively increase the output; Conical nozzle can effectively reduce thepressure loss,increase the power and efficiency of the turbine; The smaller the nozzle obliqueAngle is, the better the performance of the turbine will be, but considering the structure and theprocessing difficulty, oblique Angle should be in a certain range; By increasing the nozzle outletdiameter and blade height at the same time to decrease the diameter ratio, the flow capacity andpower of the turbine can be obviously improved. According to the study, the structure of theturbine was improved. When the inlet pressure was 0.2Mpa, the increasement and the grow rateof the turbine power were 39.4W and 24.7%,and when the inlet pressure was 0.7Mpa,theincreasement and the grow rate were 330.2W and 31.7%.
(4)The Design Researches of the Potable Water Driven FanThe hydraulic design, structure design and aerodynamic design of the portable water drivenfan were tudied. When scaling coefficient k is 0.9-1.2, the power range of different turbine is1000W?2200W,which provides wider power range for the design of the fan; nder thecondition of meeting the structural strength requirement, the selection of the urbine and fanmaximum size were completed; Combined with turbine performance curve, the way topredicting the design flow rate and total pressure of the fan was given. A design scheme of thewater driven fan was proposed at last, and was verified through a design case.Key words: water driven fan; numerical calculation; multi flow field coupling;hydraulic turbine; jet; design scheme